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A discussion of the problem of establishing the thrust-time relalion
which will achieve the oplimum compromise between reduction in gravily and drag losses
and thereby result in minimum fuel erpendifure.

of Mach

ttio.  In-

further-

dary, or INTRODUCTION mass necessary to be expelled will be excessively large.

es of con- o : : R Evidently, then, the velocity of ascent must have a
A ANE OF THE MOST IMPORTANT exterior ballistic Z 2 D %

urate de- 4 3 . : ) ; : special value at each point in space.” Goddard went
<~ oroblems associated with high-altitude rocketry

on to state that the determination of the necessary
veloeity-time funetion presents a new and unsolved
problem in the caleulus of variations. Consequently,
he abandoned a rigorous approach and constructed an
approximate, numerical solution. Almost a decade
after the publication (1919) of Goddard’s classical
paper, Hamel,® in a very brief publication, objected
to the lack of rigor in Goddard's analysis and pointed
out the existence of a solution by means of the calculus

that of carrving a specified pay load to a desired
Lewdhit most cconomically-—ie., with minimum  ex-
veaditure of fuel. The two main deterrents to achiev-
i altitude are the forces of gravity and aerodynamic
Ay, both of which diminish with increasing altitude.
Untortunately, the requirements for reducing the
deterrent cffects of gravity and drag are antithetical.
Cravity losses are proportional to flight time whereas
irag losses are proportional to some power of the
cotecity,  Thus, diminution of gravity losses requires
¢ short flight time--1.e., a high velocity —whereas
edurtion of drag losses calls for low velocity. One
v the problems which confronts the designer of a
-altitude rocket, then, is the establishment of an
wegnnm thrust  program- -the  thrust-time  relation
vich will achieve the optimum compromise between
=Aoction in gravity and drag losses and thereby result

) WADC
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oty

aoamimn fuel expenditure.

ne American rocket pioneer RoTL Goddard i Ins

i_ war A Method of Reaching Extreme Altitudes™'
s St oin calling attention to the problem of thrust

“srmming. For purposes ol mathematical analysis,
Aord conzidered an idealized rocket  namely, a
©eirenlar cone, pay load ab the tip, and casing

e ochips away continuously  (with zero veloeity
Cpenpect to the renpining rocket) s the burning

-:-i

§ ; ; Ao

i e peredes (see Fage 1), Cedldardd mlerred the
1] ‘ = .

i ~enee of o solution to his problem from the following
“ apnent SOE, ol any imtermedinte altitode,  the

oty of ascent be overy great, the e resistance
Sependhimg on the sae of the velocity) will also be
cropreat. On the other hand, if the velocity ol

cot be very small, foree will he required to overcome
stavity tor a Jong period of time.  In both cases the
(%
* Head, Acroballistics Analysis Section, China Lake, Calif. Fre, 1. Goddard s idealized rocket.
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of variations. More recently, other workers——e.g.,
Tsien and Evans,? Lawden,® and Leitinann®®—have
durived necessarv  conditions for the existence of
minimum inttial mass of a rocket required to trans-
port a given burnout mass te specified altitude.

THREORY

Let # be the mass of the rocket and s the altitude
at time £ A dot will denote difierentiation with
respect to time. Tt is assunied that the aerodynamic
drag 17 is a function of § and § only. The effective
exhaust velocity ¢ and the acceleration of gravity g
are taken as constant. (Taking account of the change
of g with altitude modifies the form of the solution
slightly.®) Conditions at the outset of powered flight,
t = 0, will be denoted by subscript zero; conditions
at burnout, ¢ = f;, by subscript one. Symbols + and
— attached to the subscripts will denote conditions
at the instant succeeding ¢ = 0 and preceding & = 4,
respectively.  Coordinate s{f) is assumed continuous
over the whole trajectory. Functions §(f) and m(i)
are taken continucus over the interval 0 < ¢ < #.
The discontinuity of § and m at £ = 0 --i.e., impulsive
boosting at launch—is permitted. (As a matter of

fact, 1t will be shown that impulsive boosting is a-

requirement of the solution.) At the outset of powered
flight, t = 0,5 = 56 = 0,5 = & = 0, and m = m,,

After initial impulsive boosting, s = sy = s = 0
still, but § = §, and m = #,.. At burnout, ¢ = £,
s =5_=§,%§=2358&_=5§,and m = my_ = ny (these

functions being assumed continuous). However, the
acceleration § and the mass-flow rate 1 are not assumed
continuous at burncut. Thus, at f = H_, § = §_
and w1 = my _. At the outset of coasting flight, { = 4,
§=d,andm = m; = Q.

The equation of rocket motion for vertical flight,
neglecting ecarth’s rotation and taking account of
drag and gravity forces only, 1s

e+ 8+ gm 4+ D5, 5) =0 (1)

Integration of Eq. (1) over the initial boost period 6,
where 6 — 0, 15

my = Mo exp (Sp4./€) (2

The equation of coasting flight 1s merely Eq. {1} with
. = ) (no thrust).

The problem is then: Given my, ¢, g, and the
funetion D{s, §), what is the function s{f) in order
that the rocket reach summit altitude § with mmimumn
initial 1mass wmg?  Integration of the equation of
coasting flight between s = s and 5§ = 5 {(§ = §; and
§ = 0) vields a relation between s and §, symbolized by

5 = ‘Jb(-\'l) {3)

By means of the calculus of variations it can be
shown that the following relations must be satisfied
in order that sz, be a minimum, Throughout powered

_ (o 00 son,
T T\ e Vo T s
D a Gode g N
=5 + IS DQ T o p) =0y
8 a';' o
At burnout, ¢ = §_,
H[QD/O5) + (D/ey) oy = wug + Disy, i ()

The problein of determining the optimum solutinn,
the function s(£) which corresponds to a4 statinnury
value of my, is then determinate.  Ttgs. (3) nd 15;
may be solved for s; and §. L. (4) 15 o sccoind.
order differential equation in s{{)} for whose integration
51 and §; constitute imitial values. Upon integration
of Eq. {4) over 0 < ¢ < #;, the values of £ and §4 are
obtained. Egq. (1) can then be integrated to give

Mo 1€,
3 “-D $4+ g

Mgy =exp(— ﬁ){ — exp ('—g-)dt -+
¢ 0+ ¢ c

#) exp ({1_‘1‘__?_1)} (6)
€

The value of initial rocket mass m, is now found from
Eq. (2). The acceleration § can be determined from
Eq. (4), whereupon Eq. (1) vields the thrust

T = —cm=mE+g+D (7)

It is easy to show® that Eq. (4) possesses a first

integral
D D §
I= [mg + D — S(i + *):]exp (S - gi‘) =0 (8)
. o5 ¢ €

Eq. (8) leads to the immediate conclusion that §
cannot vanish in the interval 0 <t < 4. Since D = 0
when § = 0, but mg = 0, it follows that § # 0. Hence
S04 # 0, and impulsive boosting is always required.

SpEciaL Caske

It is customary to express the aerodynamic drag
force in the form

D = (1/2)paCpi® (D
where
p = air density
a = reference area

Cp = drag coefficient

The air density p is essentially a function of altitude s.
The drag coefficient Cp 13 a function of Mach and
Reynolds Numbers and is therefore a function of both
altitude and velocity. A simple, idealized expression
for drag results when Cp is taken as constant. A fair
approximation to p is an exponential in 5. With these
assumptions '

D = Wexp (—as)i (10)
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If the expression for drag given by Eq. (1) is used,
Eq. (4) becomes

§_Vir+Qa-pav- 2] (11)
g BLVE 4+ 4V + 2] o

where V= §/c, B = g'ac*

Eq. (11) may be integrated for s(I7) and {(17)—i.e,
: > ¥ ol = By
) i '{ -~1n S e s
as o++2 S tl—a) -

2o + (1= 8) + v
2Ver +(1—-8) —

348, P+ —g1 —28
- -2
3 PRit0 b 0
gl oy ¥ 2+ (1—8) — %
ety 1y
S e T e
Bt =8 + ¥
Wt B =8l — 7
' el T
o SR L S Mk WY
2 el k(1 — 8) Vs — 28
where = \/(1 = /" +—8,6’—

Substitution of Eqgs. (12) and (13) in the integrated
form of Eq. (1) results in

1\ f e
.111-?1:@)(1)(—]7—&){16‘8
nty c nu g

exp(Vos) [Vos® + (1 — B) Vor — 28] X
[ ot 5 i+ 2 ]+
Ly —gr—28 Vi+(1-8Vi—28
Phe thirust is then given by

exp (13 4 gci)} (14)
i We?

& Veexp (—as) + %(1 + %) (15)

nig mag

oy X

a5y tukes the form
‘ ) We*
=28 exp | 28 - 243K
nug

et \dx
[ en( -2 g =) % o

&y = exp(—an) X2 = exp (—aS)

Wi I

e integral of Eq. (16) may be evaluated by means
ol the tabulated integral

Fi(—y) = — f - P

=
]
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F16. 2 (Top). Rate of mass flow as a function of time.

Fi1c. 3 (Center).

Nondimensional velocity as a function of time.

F1c. 4 (Bottom). Acceleration as a function of time.
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Fre. 6. Summit altitude as a function of mass-flow rate—
constant thrust.

or from the series solution
dx bx (hx)?
fexp (—bx) Pl In ixf Y - Sal T
Finally, Eq. (3) becomes
(e mg) 1731 + 1) = exp (as) (17

The solution proceeds as follows: (a} Solve Eqgs.
{16} and {17) for s, and V;; (b) substitute s, and 13
for s and V, respectively, in Eq. (12) and solve for
Voi: () using this value of I, and setting ¥V = 11
in Eq. (13) yield #; (d) Eq. (14) then gives m(17),
and Eq. (15) with Eq. (11) is used to find T(V). Since
1{ V) is known, m and T can be expressed as functions
of time £,

NungericaL EXAMPLE
Consider a rocket of the following characteristics :-
W iy = 1075 {t., ¢ = 5,000 ft./sec.
required to reach a summit altitude
S = 92.6 miles = 488,950 ft.
with miniriuin fuel expenditure.  Also
a = 22,000 ft.—1, g = 322 ft./sce.?

Applying the equations of the preceding section
results in

51 o= 62,076 1t.,
h = 18.7 sec,,
nay, iy = 2.10,

§1o= 5,308 ft. =ce.
b = 2,199 ft. sec.
ey = 314

The normalized mass-flow rate A/ = mi/my, velocity
7 = §/¢, and acceleration &g are shown as functions
of time in Figs. 2-4. The idealized thrust program
requires the attainment of an initial velocity of 2,199
ft./sec. by means of an impulsive boost. In practice,
the initial impulsive boost can be approximated by

A

A

i 557

a short phase of high thrust. Thereaiter, the idleual
thrust program may be followed.
effect on summit zltitude of replacing the ideal, 1111~
pulsive boost by a realistic, high-thrust phase, consider
the application of a constant, high thrust of duration
1.2 see. during which the same amount of fuel, ms —
Mgy, 15 conswmed as in the ideal boost. Thereafter,
burning proceeds uaccording to program.  Account
is ulso taken of the finite time to build up and drop
the thrust, with 0.1 sec. as the rise- and fall-times.
The mass-flow rate for the high-thrust phase is quite
attainable. For example, if the rocket under enn-
sideration has a burnout mass, #1, of 10 slugs, the
booster thrust is 51,700 lbs. Fig. 5 illustrates this
realistic thrust program. For comparison, consider
also the effect on summit altitude of keeping the
thrust constant throughout burning (see Fig. G).
Integration of the equalions of motion was carried
out on an IBM 701 digital computer. The following
summit altitudes resulted:

Thrust

To investigate the

Sulmmit Altitude

Ideal program 488,950 it.
Realistic program 471,680 ft.
Best constant thrust 440, 500 it.

Thus there is a loss of about 3.5 per cent in summit
altitude in going from ideal to realistic thrust program.
A further decrease of about 6.6 per cent in summit
altitude is experienced when thrust is held constant
at its best value.

CoNCLUSION

1t seems reasonable to conclude that the ideal thrust
program can be approximated by a realistic one—
one with a high-thrust phase in place of impulsive
boost—without greatly affecting summit altitude.
Whether or not the added complexity of controlling
the thrust is worth the gain over best constant thrust
is a problem which can only be answered in particular
cases.
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